\[N = 5 \quad U = 8eV \]

Put 4 particles with 1eV, 1 particle with 4eV
7 ways to do this

Put 3 particles with 1eV \((x1)\) \(\begin{array}{c}
\text{1 particle with 2eV} \\
\text{1 particle with 3eV} \\
\end{array}\) \((x2)\) \((x3)\)

Put 2 particles with 1eV \((x1)\)
2 particles with 2eV \((x4)\)
4 ways to do this

\[\text{That's it! Total of } 14 \text{ microstates.} \]

Of the three macrostates above, the middle one has the most \# of microstates, so the most probable \# of particles \(W/1eV\) is 3.