PHIL 115

Lecture #3: Inference

Example of Discourse

- Description
 - “Meletus … has a beak, and long straight hair, and a beard which is ill-grown.” (2b)
- Narrative
 - “Now the man who is dead was a poor dependent of mine who worked for us as a field labourer on our farm in Naxos, and one day in a fit of drunken passion he got into a quarrel with one of our domestic servants and slew him. My father bound him hand and foot and threw him into a ditch, and then sent to Athens to ask of a diviner what he should do with him. Meanwhile he never attended to him and took no care about him.” (4c-d)
- Explanation
 - “I [Socrates] … am desirous of becoming your [Euthyphro’s] disciple. For I observe that no one appears to notice you—not even this Meletus; but his sharp eyes have found me out at once, and he has indicted me for impiety.” (5c)
- Instructions
 - “Tell me what the pious is and what the impious.” (5d)
- Argument (see below)

Arguments from the Euthyphro:

1. Meletus’ Argument (according to Socrates) [3a-b]

- Conclusion: Socrates corrupts the youth.
 - Evidence (premise): Socrates is a maker of gods.
- Two ways to state the connection (additional premise):
 - If Socrates is a maker of gods, then Socrates corrupts the youth
 - Anyone who is a maker of gods corrupts the youth
- These alternatives point to two sets of valid logical forms
 - Stoic logic—based on the logical connections
 - if … then
 - either … or …
 - not both … and …
 - Aristotelian logic—based on the logical connections
 - All …
 - Some …
 - None …

Two Kinds of Reasoning, I

- Recall: The definition of “argument”
 - a discourse in which, certain things being asserted [the premises], something else [the conclusion] follows from their being so
- what is a discourse?
 - an organized set of statements
- kinds of discourse
 - descriptions, stories, instructions, arguments
- what is distinctive about arguments
 - that some of the propositions give us reason to believe that another proposition is true
- Note the two parts of an argument
 - premises
 - conclusion

Arguments from the Euthyphro:

2. Euthyphro’s family’s argument against Euthyphro

- How do they feel? Angry
 - Why? They think: (C) Euthyphro should not prosecute his father
- Their reasons why Euthyphro should not prosecute his father:
 - 1. Their father didn’t kill anyone
 - why not? He just threw the workman into a ditch
 - 2. The dead man did not deserve a thought
 - why not? He was himself a killer
 - 3. It’s impious for a son to prosecute his father
- What is the argument?
 - if (1 and 2 and 3) then C ? [(1 & 2 & 3) → C]
 - if (1 or 2 or 3) then C ? [(1 ∨ 2 ∨ 3) → C]
 - what’s the difference?
- To which does Euthyphro respond?
 - #3: It makes no difference whether the victim is a stranger or a relative [4b]
Two Kinds of Reasoning, II

- Deductive
 - reasoning from general principles to more specific principles or instances (particulars)
 - example
 - Any son who prosecutes his father is impious.
 - Euthyphro is a son who is prosecuting his father.
 - So (necessarily), Euthyphro is impious.

- Inductive
 - reasoning from particulars to general principles
 - example (10c)
 - a thing is not being seen because it is a thing-seen, but on the contrary it is a thing-seen because it is being seen;
 - nor is it because it is something-led that it is being led but because it is being led that it is something-led;
 - nor is something being carried because it is something-carried but it is something-carried because it is being carried;
 - [So,] when any thing is being changed (or affected) in any way, it is not being changed because it is something-changed, but rather it is something-changed because it is being changed.

Criteria of a Good Argument

- a proper form
- true premises
- a premises that are in some sense prior to the conclusion

The Form of an Argument

- The concept of form
 - Examples from elsewhere
 - In mathematics
 - Quadratic equation (ax^2 + bx + c = 0)
 - & Its solution x₁,₂ = \(-b ± \sqrt{b^2 - 4ac}
 \) \(2a\)
 - In literature
 - Limerick—five lines, aabba rhyme scheme, &c.
 A tutor who taught on the flute
 Tried teaching two tooters to toot.
 Said the two to the tutor
 Is it harder to toot or
 To tutor two tooters to toot?
 - Application in logic
 - What kinds of proposition are being used as evidence for what?

A Proper Form

- proper relation between premises and conclusion
 - example of an improper relation
 - "All the students in the German class know what die Friedhofswärterinwissembagenrentennumpfungenbscheineigung means.
 - Karl knows what the word means.
 - So, he is in the German class."
 - example of a proper relation
 - "All the students in the German class know what the word means.
 - Mary does not know.
 - So, she's not in the class."
 - what kinds of proposition are being used as evidence for what?

The Passage at 10b-c

- This passage is hard to translate into English because English uses the same participle ("seen") both as an adjective ("a thing seen") and part of a passive construction ("it is being seen"). Other language (including Greek) use different words, which makes the difference clearer. For an imperfect comparison with a more familiar language, compare the Spanish translation below.

- Greek
 - οὐχίδιπον ὑπὸ ὁρίσματος καὶ ήτοι, διὰ τοῦτο ὁρίσματος
 - ἀλλὰ τὸ ἔννοιαν διότι ὁρίσματος, διᾷ τοῦτο ὁρίσματος
 - οὐδὲ διὸν ὁρίσματος ἐστος, διᾷ τοῦτο ὁρίσματος
 - οὐδὲ διὸν ὁρίσματος φέρεται, ἀλλὰ διὸν φέρεται ὁρίσματος.

- Spanish
 - Luego no es cierto que se ve una cosa porque es vista, sino por lo contrario; ella es vista porque se la ve.
 - No es cierto que se empuja una cosa porque ella es empujada, sino que ella es empujada porque se la empuja.
 - No es cierto que se lleva una cosa porque es llevada, sino que ella es llevada porque se la lleva.
Validity

- the ideal relation between premises & conclusion
 - valid argument—an argument in which the conclusion follows with necessity from the premises
 • or (equivalently), ... in which the truth of the premises guarantees the truth of the conclusion
 • or ... for which the assertion of the premises and the denial of the conclusion would be a contradiction

Examples of Validity

- Valid argument
 1. All mammals are vertebrates.
 2. Dogs are mammals.
 3. So, Dogs are vertebrates.
- Here
 - the conclusion follows with necessity from the premises
 - the truth of the premises guarantees the truth of the conclusion
 - the assertion of the premises and the denial of the conclusion would be a contradiction.
- Another good argument
 1. This dog has always been friendly in the past.
 2. So, it will be friendly today.
- Here
 - the conclusion does not follow with necessity from the premises
 - the truth of the premises does not guarantee the truth of the conclusion
 - the assertion of the premises and the denial of the conclusion would not be a contradiction.

Validity & Soundness

- A valid argument is
 - an argument in which the conclusion follows with necessity from the premises (i.e., one that is formally correct)
- A sound argument is
 - a valid argument (formally correct)
 - with true premises

Examples of Validity

- Valid argument
 1. All mammals are vertebrates.
 2. Dogs are mammals.
 3. So, Dogs are vertebrates.
- Here
 - the conclusion follows with necessity from the premises
 - the truth of the premises guarantees the truth of the conclusion
 - the assertion of the premises and the denial of the conclusion would be a contradiction.

Premises Prior to the Conclusion

- this avoids triviality
- two forms of priority
 - premises better known than the conclusion,
 • e.g.,
 - Mars moves in an elliptical orbit; so do Mercury, Venus, Jupiter, Saturn, &c.
 - So, Planets move in elliptical orbits.
 • here, the observed fact is better known than the scientific law
 - premises state cause of conclusion
 • e.g.,
 - Any object (in a closed orbit) moving under the influence of an inverse-square law has an elliptical orbit.
 - Planets move (in a closed orbit) under the influence of an inverse-square law.
 - So they must move in an elliptical orbit.
 • here the scientific law gives the cause of the observed fact