THE TOOLS—
AND TALK—OF THE TRADE!

Since very few of us draw with just our fingernails, let's start off with what you'll need. Then we've got to make sure we're all speaking the same language. This part's easiest.
Here we go! On these two pages you'll find just about everything you'll need to get you started. One of the nice things about being a comic book artist is the fact that your equipment is no big deal. Let's just give the various items a fast once-over . . .

Pencil. Some artists prefer a soft lead, some like the finer hard lead. It's up to you.

Pen. A simple drawing pen with a thin point, for inking and bordering.

Brush. Also for inking. A sable hair #3 is your best bet.

India ink. Any good brand of black India ink is okay.

White opaquing paint. Invaluable for covering errors in inking.

Erasers. One art gum and one smooth kneaded eraser—which is cleaner to use.

A glass jar. This holds the water for cleaning your brushes.

Push pins. Handy for keeping your illustration paper from slipping off the drawing board.

Triangle. A must for drawing right angles and working in perspective.
T square. Invaluable for drawing borders and keeping lines parallel.

Ruler. For everyone who says “I can’t draw a straight line without a ruler.” Now you’ve no excuse!

Ink compass. Well, how else are you gonna draw circles? While you’re at it, you might as well get a pencil compass, too—even though Johnny forgot to draw one for you.

Illustration paper. We use 2-ply Bristol board, large enough to accommodate artwork 10” x 15”.

Drawing board. This can be a drawing table or merely a flat board which you hold on your lap. Either way, you always need some such thing upon which to rest your sheet of illustration paper.

Rag. This plain ol’ hunk of any kind of cloth is used to wipe your pen points, brushes, and whatever. The sloppier you are, the more you’ll need it.

Of course, there are some things we omitted, like a chair to sit on and a light so that you can see what you’re doing in case you work in the dark. Also, it’s a good idea to have a room to work in—otherwise your pages can get all messy in the rain. But we figured you’d know all this.

And now, onward!
Just to make sure we all use the same language and there’s no misunderstanding when we refer to things, let’s review the various names for many of the elements that make up a typical comic book page.

A: The first page of a story, with a large introductory illustration, is called the **splash page**.

B: Letters drawn in outline, with space for color to be added, are called **open letters**.

C: Copy which relates to a title is called a **blurb**.

D: The name of the story is, of course, the **title**.

E: An outline around lettering done in this jagged shape is called a **splash balloon**.

F: The regular speech indicators are called **dialogue balloons**.

G: The connecting “arrows” on dialogue balloons, showing who is speaking, are called **pointers**.

H: The words in balloons which are lettered heavier than the other words are referred to as **bold words**, or **bold lettering**.

I: This is my favorite part—where the names are. We call it the **credits**, just like in the movies.

J: All this little technical stuff, showing who publishes the mag and when and where, usually found on the bottom of the first page, is the **indicia** (pronounced in-deé-shah).

K: Copy in which someone is talking to the reader, but which is not within dialogue balloons, is called a **caption**.
A: You won’t be surprised to know that this “ZAT” is a sound effect.

B: Copy which represents what a character is thinking is a thought balloon.

C: The little connecting circles on thought balloons are called bubbles. (We’d feel silly calling them “squares”!)

D: A single illustration on a page is called a panel.

E: The space between panels is called the gutter.
Movin' right along, we now introduce you to one of Marvel's many widely heralded close-ups, so called because the "camera" (meaning the reader's eye) has moved in about as close as possible.

This type of panel, in which the reader's view of the scene is from farther away, enabling him to see the figures from head to toe, is called a medium shot.

And here we have a long shot. In fact, since it shows such an extreme wide-angle scene, you might even call it a panoramic long shot without anyone getting angry at you.
When you’re up above the scene, looking down at it, as in this panel, what else could you possibly call it but a **bird’s-eye view**?

On the other hand, when you’re below the scene of action, as in this panel, where your eye-level is somewhere near Spidey’s heel, we’re inclined to refer to it as a **worm’s-eye view**.

Of course, a view from eye level could be called a **human-eye view**.

A drawing in which the details are obscured by solid black (or any other single tone or color) is called a **silhouette**. And now that we agree upon the language, let’s get back to drawing the pictures . . .
Anyone, even you or I, can draw some sort of circle or square. But how do we make it look like the real thing? How do we make a reader feel as if he can just reach out and touch it? How do we stop it from just lying there, flat and one-dimensional, on the page? How do we give it length (pretty easy), width (not hard), and depth (this is the tough one)? In short, how do we give it the proper form?

Now that we’ve bothered to ask, let’s see how Big John can help us find the answers . . .
One of the main things that can ruin a drawing is the appearance of FLATNESS. Too many beginning artists, and even some old-timers, tend to concentrate on height and width, while neglecting the vitally important dimension of depth—which is just another name for thickness.

To say it another way, whatever you draw should seem to have thickness. It should have bulk, body, weight. It should seem solid. If it just looks flat, it won't make it.

You've got to train yourself to think of everything you draw as being solid—as having bulk. John calls this “thinking through the object.” Think all around it—think of its sides as well as its top and bottom.

Incidentally, don't get impatient with this elementary stuff. We know you're anxious to start drawing Captain America battling Dr. Doom, but even Buscema had to have all this preliminary jazz down pat first—honest. Stay with it for the next few pages and we promise you'll find it much easier to do the difficult drawings when you come to them. End of commercial!

See the sketches at the top of the page? They serve to illustrate that most objects can be reduced to three simple geometric shapes—A) the SPHERE (or ball), B) the CUBE (or box), C) the CYLINDER (or pipe). As we move along, you'll see that most every drawing is based on one or more of these three key shapes.
Here we see a simple handgun, without which there could hardly be any comic books, or TV action shows, or movies. And, if you ever want to draw a Western strip, you'd better take particular note of the fact that the barrel is really a simple cylinder, the bullet chamber is a cylinder encased in a cube, and the butt is based upon the basic shape of a cube. Obviously, the outer shape is modified and altered to suit the desire of the artist and the purpose of the drawing, but the thing to remember is the actual sphere-cube-cylinder construction beneath a drawing.

Now let's consider the automobile. Notice how there's a large cube representing the shape of the body, with a smaller cube denoting the window and roof area. As for the wheels—cylinders, of course.
The plane is equally easy. As you can see, it's composed of a number of simple cylinders.

The purpose of this little exercise is to train you to “think through” the objects you see, the objects you want to draw. Don’t just see them as they are, but rather see them as made up of any combination of our three basic shapes. “Sphere, cube, and cylinder” may be the most important words we can teach you—next to Make Mine Marvel, of course!
As promised, let's see how what we've learned relates to the human figure. In this quick sketch of Daredevil, notice he has cubes for a rib cage and hip area, while cylinders form the basic construction of his arms and legs. Even the little band around his thigh follows the form of a cylinder.

The same goes for faces. This one is also based upon a cylinder—which has been cut off at the sides.
Now, let's get a little heavier. Even spheres, cubes, and cylinders can use some embellishment, and this is the way we add shading (black tones) to reinforce the feeling of dimension.

Notice how the use of shading immediately gives the objects a sense of solidity. They seem to have depth, roundness, and mass.

Okay, okay! It's time to start putting it all together in a picture. So what're you waiting for? Turn the page, o potential producer of phantasmagoric picture panels!
Below, on the left side of the page, you’ll see two typical panels done in the Marvel style. Next to them, on the right, we’ve attempted to demonstrate what we’ve been saying for the past few pages. The top drawing is obviously composed of a sphere, plus a number of cylinders, with a cube on the bottom. The other panel depicts a flying car which, despite its unique and oddball shape, is nevertheless still based on our good ol’ cube, somewhat modified to be sure.

The important thing about all this is to train you to think in terms of spheres, cubes, and cylinders whenever you see or draw any object. Once it becomes a habit with you, you’ll find your drawings will begin to assume the proper form which seems to make them come alive.
Here's more of the same, just to make sure we've left nothing out.

And now, get your ruler, T square, and triangle ready, 'cause it's time for—
THE POWER OF— PERSPECTIVE!

Just as FORM is all-important in making an object look real, so is PERSPECTIVE vitally necessary in making a scene look accurate—in making things appear to be correctly placed in the foreground, background, and all the places in between.

It isn’t an easy subject, but you’ve got to master it in order to draw a comic strip—and we promise to make it as simple and as clear as we can. (And, if it’s any consolation, it’s just as tough for us to explain as it is for you to learn!)

So, since we’re all in this thing together, let’s go!
As usual, we’ll study the pix on the page opposite. And this time there are two new words you’ve got to make a part of your conscious and subconscious vocabulary. The words are horizon line.

Basically, the horizon line simply represents the viewer’s eye level— that is, the spot in the picture where your own eyes would be if you were there observing the scene.

Let’s start with some little examples. Notice the cube on the first line of drawings (A). If you take it and turn it so that we’re looking at it head-on (B), you’ll see that the two side lines on top seem to be coming together, the way train tracks appear to come together as they recede farther into the distance. Okay then, let’s continue drawing those two lines until they meet (C). The point at which they meet is the natural horizon line, and is consequently our own eye level. This is called ONE-POINT PERSPECTIVE because the perspective lines converge upon the one single point.

However, if we turn the cube and then follow the converging lines to their ultimate meeting place, we get a TWO-POINT PERSPECTIVE (D)— and I’m not gonna insult your intelligence by telling you why we’ve changed its name! Incidentally, you’ll notice that the cube is below the horizon line and therefore below your own eye level.

In figure (E) we’ve merely redrawn the cube exactly at your eye level, while in figure (F) we’ve drawn it a third way, showing how to put it above eye level.

Study it awhile. It’s not as complicated as it may sound, honest!
Here, just because Johnny hates to let his ruler go to waste, he’s given you a couple more examples showing how the principles of perspective apply to any street scene.

In this first drawing, despite the size of the scene and the number of buildings, you’ll notice that everything converges towards one point; therefore it’s a ONE-POINT PERSPECTIVE.

You can guess what we’re about to tell you about this drawing. The perspective lines are converging to two different points (along the same horizon line, of course). Therefore, we have an undeniable example of—TA DAAAA— a TWO-POINT PERSPECTIVE. And there’s more to come . . .
WELL, IT HAD TO HAPPEN. THESE TWO PICS OFFER YOU EXAMPLES OF SCENES CONTAINING THREE-POINT PERSPECTIVE. CAN YOU FIND THE THREE VANISHING POINTS? OOPS, WE FORGOT TO MENTION—THE POINT AT WHICH THE CONVERGING LINES COME TOGETHER AND FINALLY MEET IS CALLED, NATURALLY ENOUGH, THE VANISHING POINT. BETTER LATE THAN NEVER!

SPIDER-MAN HATH FORGOTTEN TO TELL THEE—THE THIRD VANISHING POINT ON YON TOP ILLUSTRATION DOETH NOT GO TO THE HORIZON. WHilst THE FIRST AND SECOND VANISHING POINTS DO GO TO THE HORIZON, THE THIRD ONE RISES FAR ABOVE, AND IS BUT AN ARBITRARY POINT; JUST AS THE THIRD ONE IN THIS LOWER PANEL DOETH FALL BELOW THE HORIZON IN AN EQUALLY ARBITRARY MANNER. SO BE IT!
Let's say you want to draw the inside of a room. Sounds simple, huh? But what about the furniture? You want it to look natural, to look as if it belongs, and most important of all, to look as if some of the pieces aren’t floating in space. They have to seem accurate and realistic in relation to each other. Well, that’s what perspective is all about.

In the two illustrations on the page, notice how John makes use of his eye level (horizon line) and his vanishing points in order to have everything in the correct perspective. No matter where the viewer’s eye level may be, everything falls into place pleasingly because the perspective is correct.

And, did you notice the way the chair at the bottom of the lower pic is angled (turned) differently than the other pieces of furniture, so that it goes to different vanishing points? This gives us a third and fourth vanishing point on the same horizon line.

If it seems awfully complicated to you, don’t worry. Johnny had to explain it to me about a half-dozen times—and I’m still wrestling with most of it! Anyway, let’s go to the next page and tackle a problem or two ...
Okay. First we'll consider some explanatory diagrams, then we'll see how they apply to pictures we might use in our magazines.

One of the main purposes of our study of perspective is to allow us to tilt objects, to twist them around and turn them without making them seem distorted or incorrect. These diagrams demonstrate how it's done in the very simplest way. So, here we go…

We all know that a perfect circle will fit perfectly within a perfect square.

But, if we change the angle (the position) of the square, then see how the circle must change also. See how it becomes an oval.

Now then, if we draw a cube (two squares in perspective, side-by-side), and then draw two ovals within the squares, and connect the ovals, we end up with a wheel—drawn in perspective.

Just thought you’d like to see how to divide a square shape in two—in the proper perspective. Simply draw straight lines from corner to corner, as shown. The exact center point is where the two lines meet. Once you’ve found your perfect center point—in perspective—you know where to do the dividing.
Suppose you want to divide a wall into five equal parts, but to complicate the process the wall is drawn in perspective (with lines converging towards a distant vanishing point). You merely use the same procedure we demonstrated in example #2 above—mark off five equal divisions on the side of the wall and then draw a straight line from corner to corner.

Your points of division will be found exactly where the lines cross.

Erase the original guide lines, and you end up with your five equal vertical divisions, all in the correct perspective.

Now then, we just know that you’ve been waiting all your life for a chance to draw a checkerboard floor in perspective. Here’s how.
—Draw your basic square shape, at any angle you wish.
—On a line parallel to the bottom of the drawing, mark off as many squares as you wish, equally divided.
—From those points, now draw lines extending towards the vanishing point.
—Add your diagonal line, and where it crosses the lines you’ve originally drawn, you have your exact division points for perfect squares in perspective.

Since you’ve been such a good sport about the dull stuff, now let’s go to the next page and see what bearing all this has on some zingy comic book drawings . . .
Now, when we mention that this drawing is based on THREE-POINT PERSPECTIVE, you'll know what we mean, won't you? Also, it's a WORM'S-EYE VIEW, right? Right!

Here's a simple ONE-POINT PERSPECTIVE, just a bit below eye level. The eye level is really the bottom of the car's wheels, because that's where your eye would be if you were actually on the scene. See how it all begins to come together?

By now we don't even have to tell you that this is obviously a THREE-POINT PERSPECTIVE bird's-eye view—but we'll just mention it anyway because we need the exercise!
We thought you'd enjoy these particular pix—

—because they show how we put the figures themselves into the proper perspective in typical Marvel scenes.

Notice that the scene above is at human-eye level, which tends to involve the reader more in the scene.

Pay particular attention to where the eye level is in each panel, as well as the location of the various vanishing points.